4.1 Article

Investigation of the concentration of bacteria and their cell envelope components in indoor air in two elementary schools

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10473289.2000.10464225

关键词

-

向作者/读者索取更多资源

Bacterial cell envelope components are widely distributed in airborne dust, where they act as inflammatory agents causing respiratory symptoms. Measurements of these agents and ether environmental factors are assessed in two elementary schools in a southeastern city in the United States. Muramic acid (MA) was used as a marker for bacterial peptidoglycan (PG), and 3-hydroxy fatty acids (3-OH FAs) were used as markers for Gram-negative bacterial lipopolysaccharide (LPS). Culturable bacteria were collected using an Andersen sampler with three different culture media. In addition, temperature (T), relative humidity (RH), and CO2 were continuously monitored. Concentrations of airborne MA and 3-OH FAs were correlated with total suspended particulate (TSP) levels. Outdoor MA (mean = 0.78-1.15 ng/m(3)) and 3-OH FA levels (mean = 2.19-2.18 ng/m(3)) were similar at the two schools. Indoor concentrations of airborne MA and 3-OH FAs differed significantly between schools (MA: 1.44 vs. 2.84 ng/m3; 3-OH FAs: 2.96 vs. 4.57 ng/m(3)). Although indoor MA levels were low, they were significantly related to teachers' perception of the severity of indoor air quality (IAQ) problems in their classrooms. Concentrations of CO2 correlated significantly with all bacteria measurements. Because CO2 levels were related to the number of occupants and the ventilation rates, these findings are consistent with the hypothesis that the children and teachers are sources of bacterial contamination. Many culturable bacteria present in indoor air are opportunistic organisms that can be infectious for compromised individuals, while both culturable and nonculturable bacterial remnants act as environmental toxins for both healthy and compromised individuals. Measuring the total bacteria load would be most accurate in assessing the biotoxicity of indoor air. Chemical analysis of MA and 3-OH FAs, when coupled with the conventional culture method, provides complementary information for assessing biocontamination of indoor air.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据