4.7 Article

Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst

期刊

ENERGY & FUELS
卷 14, 期 6, 页码 1188-1194

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef0000781

关键词

-

向作者/读者索取更多资源

From the decomposition of methane, hydrogen without carbon oxides can be produced with a high energy-efficiency, which is attractive for its suitability of utilization in the fuel cells. At a same time nanocarbon materials with attractive texture and structure can be produced in a large amount. Toward a simultaneous bulk production of hydrogen and nanocarbon, catalysts based on nanometer-scale nickel particles prepared from a hydrotalcite-like anionic clay precursor have been designed and tested to fit the process goals. For hydrogen production, as the equilibrium methane conversion of the reaction increases with the increase of the reaction temperature, the process is commercially more attractive if it can be operated at a temperature higher than 1073 K. However, a nickel catalyst has a maximum activity for nanocarbon production at 923 K. Modification of the catalyst with doping of copper increased the activation temperature and leads to a production of nanocarbon with an attractive structure. The feasibility and the challenges met for the coupling of the two process goals is discussed, and some promising results are presented in this work.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据