4.7 Article

Using native and syntenically mapped cDNA alignments to improve de novo gene finding

期刊

BIOINFORMATICS
卷 24, 期 5, 页码 637-644

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btn013

关键词

-

资金

  1. NCI NIH HHS [N01-CO-12400] Funding Source: Medline

向作者/读者索取更多资源

Motivation: Computational annotation of protein coding genes in genomic DNA is a widely used and essential tool for analyzing newly sequenced genomes. However, current methods suffer from inaccuracy and do poorly with certain types of genes. Including additional sources of evidence of the existence and structure of genes can improve the quality of gene predictions. For many eukaryotic genomes, expressed sequence tags (ESTs) are available as evidence for genes. Related genomes that have been sequenced, annotated, and aligned to the target genome provide evidence of existence and structure of genes. Results: We incorporate several different evidence sources into the gene finder AUGUSTUS. The sources of evidence are gene and transcript annotations from related species syntenically mapped to the target genome using TransMap, evolutionary conservation of DNA, mRNA and ESTs of the target species, and retroposed genes. The predictions include alternative splice variants where evidence supports it. Using only ESTs we were able to correctly predict at least one splice form exactly correct in 57 of human genes. Also using evidence from other species and human mRNAs, this number rises to 77. Syntenic mapping is well-suited to annotate genomes closely related to genomes that are already annotated or for which extensive transcript evidence is available. Native cDNA evidence is most helpful when the alignments are used as compound information rather than independent positionwise information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据