4.7 Article

Complexity reduction of biochemical rate expressions

向作者/读者索取更多资源

Motivation: The current trend in dynamical modelling of biochemical systems is to construct more and more mechanistically detailed and thus complex models. The complexity is reflected in the number of dynamic state variables and parameters, as well as in the complexity of the kinetic rate expressions. However, a greater level of complexity, or level of detail, does not necessarily imply better models, or a better understanding of the underlying processes. Data often does not contain enough information to discriminate between different model hypotheses, and such overparameterization makes it hard to establish the validity of the various parts of the model. Consequently, there is an increasing demand for model reduction methods. Results: We present a new reduction method that reduces complex rational rate expressions, such as those often used to describe enzymatic reactions. The method is a novel term-based identifiability analysis, which is easy to use and allows for user-specified reductions of individual rate expressions in complete models. The method is one of the first methods to meet the classical engineering objective of improved parameter identifiability without losing the systems biology demand of preserved biochemical interpretation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据