4.8 Article

Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens

期刊

NATURE BIOTECHNOLOGY
卷 18, 期 11, 页码 1162-1166

出版社

NATURE AMERICA INC
DOI: 10.1038/81145

关键词

cationic peptides; transgenic potato; phytopathogens; disease resistance

向作者/读者索取更多资源

Here we describe a strategy for engineering transgenic plants with broad-spectrum resistance to bacterial and fungal phytopathogens. We expressed a synthetic gene encoding a N terminus-modified, cecropin-melitiin cationic peptide chimera (MsrA1), with broad-spectrum antimicrobial activity. The synthetic gene was introduced into two potato (Solanum tuberosum L,) cultivars, Desiree and Russet Burbank, stable incorporation was confirmed by PCR and DNA sequencing, and expression confirmed by reverse transcription (RT)-PCR and recovery of the biologically active peptide. The morphology and yield of transgenic Desiree plants and tubers was unaffected. Highly stringent challenges with bacterial or fungal phytopathogens demonstrated powerful resistance. Tubers retained their resistance to infectious challenge for more than a year, and did not appear to be harmful when fed to mice. Expression of msrA1 in the cultivar Russet Burbank caused a striking lesion-mimic phenotype during leaf and tuber development, indicating its utility may be cultivar specific. Given the ubiquity of antimicrobial cationic peptides as well as their inherent capacity for recombinant and combinatorial variants, this approach may potentially be used to engineer a range of disease-resistant plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据