4.7 Article

MMG: a probabilistic tool to identify submodules of metabolic pathways

期刊

BIOINFORMATICS
卷 24, 期 8, 页码 1078-1084

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btn066

关键词

-

资金

  1. EPSRC [EP/E036252/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/E036252/1, GR/S84347/01] Funding Source: researchfish

向作者/读者索取更多资源

Motivation: A fundamental task in systems biology is the identification of groups of genes that are involved in the cellular response to particular signals. At its simplest level, this often reduces to identifying biological quantities (mRNA abundance, enzyme concentrations, etc.) which are differentially expressed in two different conditions. Popular approaches involve using t-test statistics, based on modelling the data as arising from a mixture distribution. A common assumption of these approaches is that the data are independent and identically distributed; however, biological quantities are usually related through a complex (weighted) network of interactions, and often the more pertinent question is which subnetworks are differentially expressed, rather than which genes. Furthermore, in many interesting cases (such as high-throughput proteomics and metabolomics), only very partial observations are available, resulting in the need for efficient imputation techniques. Results: We introduce Mixture Model on Graphs (MMG), a novel probabilistic model to identify differentially expressed submodules of biological networks and pathways. The method can easily incorporate information about weights in the network, is robust against missing data and can be easily generalized to directed networks. We propose an efficient sampling strategy to infer posterior probabilities of differential expression, as well as posterior probabilities over the model parameters. We assess our method on artificial data demonstrating significant improvements over standard mixture model clustering. Analysis of our model results on quantitative high-throughput proteomic data leads to the identification of biologically significant subnetworks, as well as the prediction of the expression level of a number of enzymes, some of which are then verified experimentally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据