4.5 Article

RuvABC-dependent double-strand breaks in dnaBts mutants require RecA

期刊

MOLECULAR MICROBIOLOGY
卷 38, 期 3, 页码 565-574

出版社

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1365-2958.2000.02152.x

关键词

-

向作者/读者索取更多资源

Replication fork arrest can cause DNA double-strand breaks (DSBs). These DSBs are caused by the action of the Holliday junction resolvase RuvABC, indicating that they are made by resolution of Holliday junctions formed at blocked forks. In this work, we study the homologous recombination functions required for RuvABC-mediated breakage in cells deficient for the accessory replicative helicase Rep or deficient for the main Escherichia coli replicative helicase DnaB. We show that, in the rep mutant, RuvABC-mediated breakage occurs in the absence of the homologous recombination protein RecA. In contrast, in dnaBts mutants, most of the RuvABC-mediated breakage depends on the presence of RecA, which suggests that RecA participates in the formation of Holliday junctions at forks blocked by the inactivation of DnaB. This action of RecA does not involve the induction of the SOS response and does not require any of the recombination proteins essential for the presynaptic step of homologous recombination, RecBCD, RecF or RecO. Consequently, our observations suggest a new function for RecA at blocked replication forks, and we propose that RecA acts by promoting homologous recombination without the assistance of known presynaptic proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据