4.5 Article

Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel

出版社

ASME
DOI: 10.1115/1.1286369

关键词

-

向作者/读者索取更多资源

An experimental investigation was conducted to determine the effects of tool cutting-edge geometry (edge preparation) and workpiece hardness on surface residual stresses for finish hard turning of through-hardened AISI 52100 steel. Polycrystalline cubic boron nitride (PCBN) inserts with representative types of edge geometry including up-sharp edges, edge hones, and chamfers were used as the cutting tools in this study. This study shows that tool edge geometry is highly influential with respect to surface residual stresses, which were measured using x-ray diffraction. In general, compressive surface residual stresses in the axial and circumferential directions were generated by large edge hone tools in longitudinal turning operations. Residual stresses in the axial and circumferential directions generated by large edge hone tools are typically more compressive than stresses produced by small edge hone tools. Microstructural analysis shows that thermally-induced phase transformation effects are present at all feeds and workpiece hardness values with the large edge hone tools, and only at high feeds and hardness values with the small edge hone tools. In general, continuous while layers on the workpiece surface correlate with compressive residual stresses, while over-tempered regions correlate with tensile or compressive residual stresses depending on the workpiece hardness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据