4.6 Article

Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions

期刊

BIOGEOCHEMISTRY
卷 102, 期 1-3, 页码 59-72

出版社

SPRINGER
DOI: 10.1007/s10533-010-9421-x

关键词

Dissolved organic matter (DOM); Drought; Mediterranean; Fluvial system; Ground water; Biodegradable DOC (BDOC); Optical properties; EEMs; Fluorescence index; SUVA index

资金

  1. Ministerio de Ciencia e Innovacion [CGL2007-0144/HID]
  2. CSIC-CNR [2006IT0010]

向作者/读者索取更多资源

In Mediterranean regions, drought is one of the main factors shaping fluvial ecosystems. Droughts cause a shift from lotic to lentic conditions, triggering a gradual fragmentation of the longitudinal hydrological continuum, and a severe alteration of water chemical properties. However, within a biogeochemical perspective, little is known about how and to which extend droughts modify the chemical properties of dissolved organic matter (DOM). In this study, the variability of DOM properties along a fragmented fluvial system is explored, during a summer severe drought, by means of (a) the ratio between dissolved organic carbon and nitrogen concentrations (DOC:DON); (b) DOC bioavailability (BDOC) and (c) DOM optical properties (SUVA index, fluorescence index, and excitation-emission fluorescence matrices). DOM and water measurements were collected from isolated water parcels that became disconnected from the fluvial continuum at different times, and were compared with data obtained in the following autumn, when the fluvial continuum was re-established. Analysis of DOM chemical properties evidenced that these properties during drought clearly differed from those observed in autumn, but changes did not follow an arbitrary pattern. Thus, the sampling sites with lotic water bodies showed DOM properties similar to those observed in autumn reflecting the dominance of terrestrial inputs. But, once hydrological fragmentation occurred, there was a gradual increase in the contribution of autochthonous DOM as the time elapsed since the pools were established, and the geochemical conditions shifted from oxidized to reduced conditions. In consequence, the fragmentation of fluvial continuum generates a set of distinct biochemical hot spots (i.e., each water parcel), revealing that extreme drought greatly amplifies the qualitative heterogeneity of organic matter in a fluvial system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据