4.6 Article

Rhizogenic Fe-C redox cycling: a hypothetical biogeochemical mechanism that drives crustal weathering in upland soils

期刊

BIOGEOCHEMISTRY
卷 87, 期 2, 页码 127-141

出版社

SPRINGER
DOI: 10.1007/s10533-007-9172-5

关键词

rhizospheres; soil redox; soil organic matter; iron; pedogenic oxides; soil microsites; mottling; redoximorphic features

向作者/读者索取更多资源

Field-scale observations of two upland soils derived from contrasting granite and basalt bedrocks are presented to hypothesize that redox activity of rhizospheres exerts substantial effects on mineral dissolution and colloidal translocation in many upland soils. Rhizospheres are redox-active microsites and in the absence of O-2, oxidation of rhizodeposits can be coupled by reduction of redox-active species such as Fe, a biogenic reduction that leads to Fe translocation and oxidation, accompanied by substantial proton flux. Not only do rhizogenic Fe-C redox cycles demonstrate a process by which the rhizosphere affects an environment well outside the near-root zone, but these redox processes are also hypothesized to be potent weathering systems, such that rhizogenic redox-reactions complement acid- and ligand-promoted reactions as major biogeochemical processes that control crustal weathering. The potential significance of Fe-C redox cycling is underscored by the deep and extensive rooting and mottling of upland subsoils across a wide range of plant communities, lithologies, and soil-moisture and temperature regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据