4.7 Article

Discrete chirp-Fourier transform and its application to chirp rate estimation

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 48, 期 11, 页码 3122-3133

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/78.875469

关键词

chirp-Fourier transform; chirp rate estimation; chirps

向作者/读者索取更多资源

The discrete Fourier transform (DFT) has found tremendous applications in almost all fields, mainly because it can be used to match the multiple frequencies of a stationary signal with multiple harmonics. In many applications, wideband and nonstationary signals, however, often occur. One of the typical examples of such signals is chirp-type signals that are usually encountered in radar signal processing, such as synthetic aperture radar (SAR) and inverse SAR imaging. Due to the motion of a target, the radar return signals are usually chirps, and their chirp rates include the information about the target, such as the location and the velocity. In this paper, we study discrete chirp-Fourier transform (DCFT), which is analogous to the DFT. Besides the multiple frequency matching similar to the DFT, the DCFT can be used to match the multiple chirp rates in a chirp-type signal with multiple chirp components. We show that when the signal length N is prime, the magnitudes of all the sidelobes of the DCFT of a quadratic chirp signal are 1, whereas the magnitude of the mainlobe of the DCFT is rootN. With this result, an upper bound for the number of the detectable chirp components using the DCFT is provided in terms of signal length and signal and noise powers. We also show that the N-point DCFT performs optimally when N is a prime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据