4.7 Review

Functional diversity of xyloglucan-related proteins and its implications in the cell wall dynamics in plants

期刊

PLANT BIOLOGY
卷 2, 期 6, 页码 598-604

出版社

GEORG THIEME VERLAG KG
DOI: 10.1055/s-2000-16643

关键词

cell wall; cellulose; xyloglucan; endoxyloglucan transferase; genome; xyloglucan-related protein family

向作者/读者索取更多资源

The plant cell wall is a dynamic apparatus responsible for both morphogenesis and responsiveness to environmental conditions. In the cell wall of most seed plants, cellulose microfibrils are cross-linked by xyloglucans to form a cellulose/xyloglucan framework, which functions as the mechanical underpinning of the cell wall. Endoxyloglucan transferases are a class of enzymes that play a central role in construction and modification of the plant cell wall. These enzymes are encoded by a large multi-gene family termed xyloglucan-related proteins (XRPs). More than 24 members of the XRP family have so far been identified in Arabidopsis thaliana. Each member of this family functions as either a hydrolase or a transferase acting an xyloglucans. The primary structures of proteins and gene-expression profiles have strongly suggested their potentially divergent roles in plant morphogenesis: different members of this family are expressed in different types of tissues at distinct developmental stages and respond differentially to individual hormones as well as environmental stimuli. These facts imply that each member of this gene family is individually committed to a specific process that proceeds in a specific tissue at a specific stage of development. Probably the generation and maintenance of the cell walls in a whole organ, and thus in the whole plant, is achieved by the ensemble of individual members of the XRP family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据