4.7 Article

Lipoprotein promotes caveolin-1 and Ras translocation to caveolae - Role of cholesterol in endothelial signaling

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.ATV.20.11.2465

关键词

caveolin-1; ras; cholesterol; LDL; ECs

资金

  1. NHLBI NIH HHS [HL-43023] Funding Source: Medline

向作者/读者索取更多资源

To explore the role of LDL in caveolin-Ras regulation in human endothelial cells (ECs), we incubated confluent human umbilical vein endothelial cells (HUVECs) with LDL. This resulted in a high steady-state caveolin-1 (Cav-1) expression at both the mRNA and protein levels. LDL exposure appeared not to regulate the abundance of Cav-1. Immunofluorescence staining showed that Cav-1 protein migrated from the cytoplasm to the cell membrane after LDL exposure. Cav-1 protein and cholesterol partitioned mainly into the caveola fractions, and LDL increased both Cav-1 and cholesterol in these fractions. Ras protein in caveola fractions was also increased by LDL. Increased Ras was detected in Cav-1 immunoprecipitated samples, and conversely, increased Cav-1 was found in Ras-immunoprecipitated samples. We also demonstrated LDL-increased Ras activity in HUVEC's by measuring the GTP/GTP + GDP ratio of Ras with [P-32]orthophosphate labeling in the cells. Finally, we determined the binding of [H-3]-labeled free cholesterol and recombinant H-Ras to Cav-1 fusion proteins in vitro. Both cholesterol and Ras bound to full-length GST-Cav-1, scaffolding domain (61-101), and C-terminal (135-178) Cav-1 fusion peptides. Addition of cholesterol enhanced Ras binding to the full-length and scaffolding domain of Cav-1 but not to the C-terminal Cav-1. These findings strongly suggest a role for Cav-1 in cholesterol trafficking and cholesterol-mediated intracellular signaling, which may mediate EC activation by LDL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据