4.5 Review

Pretreatment: the key to unlocking low-cost cellulosic ethanol

期刊

出版社

WILEY
DOI: 10.1002/bbb.49

关键词

lignocellulosic biomass; cellulosic ethanol; pretreatment; enzymatic hydrolysis; cellulose; hemicellulose; lignin

资金

  1. Ford Chair in Environmental Engineering
  2. Bourns College of Engineering at the University of California at Riverside
  3. Center for Environmental Research and Technology (CE-CERT)
  4. Chemical and Environmental Engineering Department.

向作者/读者索取更多资源

New transportation fuels are badly needed to reduce our heavy dependence on imported oil and to reduce the release of greenhouse gases that cause global climate change; cellulosic biomass is the only inexpensive resource that can be used for sustainable production of the large volumes of liquid fuels that our transportation sector has historically favored. Furthermore, biological conversion of cellulosic biomass can take advantage of the power of biotechnology to take huge strides toward making biofuels cost competitive. Ethanol production is particularly well suited to marrying this combination of need, resource, and technology. In fact, major advances have already been realized to competitively position cellulosic ethanol with corn ethanol. However, although biotechnology presents important opportunities to achieve very low costs, pretreatment of naturally resistant cellulosic materials is essential if we are to achieve high yields from biological operations; this operation is projected to be the single, most expensive processing step, representing about 20% of the total cost. In addition, pretreatment has pervasive impacts on all other major operations in the overall conversion scheme from choice of feedstock through to size reduction, hydrolysis, and fermentation, and on to product recovery, residue processing, and co-product potential. A number of different pretreatments involving biological, chemical, physical, and thermal approaches have been investigated over the years, but only those that employ chemicals currently offer the high yields and low costs vital to economic success. Among the most promising are pretreatments using dilute acid, sulfur dioxide, near-neutral pH control, ammonia expansion, aqueous ammonia, and lime, with significant differences among the sugar-release patterns. Although projected costs for these options are similar when applied to corn stover, a key need now is to dramatically improve our knowledge of these systems with the goal of advancing pretreatment to substantially reduce costs and to accelerate commercial applications. (C) 2007 Society of Chemical Industry and John Wiley & Sons, Ltd

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据