4.5 Review

Photophysics of nanometer sized metal particles: Electron-phonon coupling and coherent excitation of breathing vibrational modes

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 104, 期 43, 页码 9954-9965

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp002256x

关键词

-

向作者/读者索取更多资源

The wide variety of applications of metal nanoparticles has motivated many studies of their properties. Some important practical issues are how the size, composition and structure of these materials affect their catalytic and optical properties. In this article we review our recent work on the photophysics of metal nanoparticles. The systems that have been investigated include Au particles with sizes ranging from 2 nm diameter (several hundred atoms) to 120 nm diameter, and bimetallic core-shell particles composed of Au, Ag, Pt and/or Pb. These particles, which have a rather narrow size distribution, are prepared by radiolytic techniques. By performing time-resolved laser measurements we have been able to investigate the coupling between the electrons and phonons in the particles, and their low frequency breathing modes. These experiments show that for Au the time scale for electron-phonon coupling does not depend on size, in contrast to metals such as Ga and Ag. On the other hand, the frequency of the acoustic breathing modes strongly depends on the size of the particles, as well as their composition. These modes are impulsively excited by the rapid lattice heating that accompanies ultrafast laser excitation. The subsequent coherent nuclear motion modulates the transmitted probe laser intensity, giving a beat signal in our experiments. Unlike quantum-beats in molecules or semiconductors, this signal can be completely understood by classical mechanics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据