4.6 Article

Two distinct triggers for cycling of the lagging strand polymerase at the replication fork

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 44, 页码 34757-34765

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M006556200

关键词

-

资金

  1. NIGMS NIH HHS [GM34557, R37 GM034557] Funding Source: Medline

向作者/读者索取更多资源

There are two modes of DNA synthesis at a replication fork. The leading strand is synthesized in a continuous fashion in lengths that in Escherichia coli can be in excess of 2 megabases. On the other hand, the lagging strand is synthesized in relatively short stretches of 2 kilobases. Nevertheless, identical assemblies of the DNA polymerase In: core tethered to the beta sliding clamp account for both modes of DNA synthesis. Yet the same lagging strand polymerase accounts for the synthesis of all Okazaki fragments at a replication fork, cycling repeatedly every 1 or 2 s from the S'-end of the just-completed fragment to the 3'-end of the new primer. Several models have been invoked to account for the rapid cycling of a polymerase complex that can remain bound to the template for upward of 40 min. By using isolated replication protein-DNA template complexes, we have tested these models and show here that cycling of the lagging strand polymerase can be triggered by either the action of primase binding to the replisome and synthesizing a primer or by collision of the lagging strand polymerase with the 5' end of the previous Okazaki fragment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据