4.8 Article

Timing of hepatocyte entry into DNA synthesis after partial hepatectomy is cell autonomous

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.220430497

关键词

-

资金

  1. NIEHS NIH HHS [2T32ES7015-21, T32 ES007015, R01ES07671] Funding Source: Medline

向作者/读者索取更多资源

After surgical removal of two-thirds of the liver, remaining hepatocytes replicate and restore hepatic mass within 2 weeks. This process must be initiated by signals extrinsic to the hepatocyte, but it remains unclear whether subsequent events leading to DNA synthesis (S phase) are regulated by circulating or locally produced growth factors (a noncell autonomous response), or by a program intrinsic to the hepatocyte itself (a cell autonomous response). To identify the type of mechanism regulating passage to S, we exploited the difference between rat and mouse hepatocytes in the timing of DNA synthesis after partial hepatectomy, which peaks 12-16 h earlier posthepatectomy in rat compared with mouse. Four groups of animals received two-thirds partial hepatectomies: rats, mice, mice with chimeric livers composed of both transplanted rat hepatocytes and endogenous mouse hepatocytes. and mice with chimeric livers composed of both transplanted and endogenous mouse hepatocytes. Following two-thirds partial hepatectomy. both donor and endogenous hepatocytes in mouse/ mouse chimeric livers displayed kinetics of DNA synthesis characteristic of the mouse, indicating that transplantation per se did not affect the response to subsequent partial hepatectomy. In contrast, rat hepatocytes in chimeric mouse livers displayed rat kinetics despite their presence in a mouse host. Thus, factors intrinsic to the hepatocyte must regulate the timing of entry into DNA synthesis. This result defines the process as cell autonomous and suggests that locally or distantly produced cytokines or growth factors may have a permissive but not an instructive role in progression to S.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据