4.8 Article

Reversible phase transitions in polymer gels induced by radiation forces

期刊

NATURE
卷 408, 期 6809, 页码 178-181

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/35041522

关键词

-

向作者/读者索取更多资源

Many polymer gels undergo reversible, discontinuous volume changes in response to changes in the balance between repulsive intermolecular forces that act to expand the polymer network and attractive forces that act to shrink it. Repulsive forces are usually electrostatic or hydrophobic in nature, whereas attraction is mediated by hydrogen bonding or van der Waals interactions. The competition between these counteracting forces, and hence the gel volume(1-3), can thus be controlled by subtle changes in parameters such as pH (ref. 4), temperature(5), solvent composition(6) or gel composition(7). Here we describe a more direct influence on this balance of forces, by showing that the radiation force generated by a focused laser beam induces reversible shrinkage in polymer gels. Control experiments confirm that the laser-induced volume phase transitions are due to radiation forces, rather than local heating, modifying the weak interactions in the gels, in agreement with previous observations of light-induced chain association in polymer solutions(8,9). We rnd that, owing to shear-relaxation processes(10), gel shrinkage occurs up to several tens of micrometres away from the irradiation spot, raising the prospect that the combination of stimuli-responsive polymer gels and laser light might lead to new gel-based systems for applications such as actuating or sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据