4.5 Article

Intracerebroventricular propofol is neuroprotective against transient global ischemia in rats: extracellular glutamate level is not a major determinant

期刊

BRAIN RESEARCH
卷 883, 期 1, 页码 69-76

出版社

ELSEVIER
DOI: 10.1016/S0006-8993(00)02889-4

关键词

delayed neuronal death; hippocampus; dialysis electrode; neurotoxicity

向作者/读者索取更多资源

Excessive glutamate accumulation in extracellular space due to ischemia in the central nervous system (CNS) is believed to initiate the cascade toward irreversible neuronal damage. An intravenous general anesthetic, propofol (2,6-diisopropylphenol) has been implicated to be neuroprotective against cerebral ischemia. The purpose of this study was to test the hypothesis that intracerebroventricular propofol produced a reduction in extracellular glutamate level during global ischemia and the resultant neuroprotection. Adult male Wistar rats were anesthetized with halothane in nitrous oxide/oxygen and mechanically ventilated. Propofol (3 or 10 mg/kg), Intralipid(R) as a vehicle for propofol, or artificial cerebrospinal fluid (aCSF) was administered into the cerebral ventricles 15 min prior to a 10-min forebrain ischemia elicited by the four-vessel occlusion. Extracellular glutamate concentration in the hippocampal CA1 was continuously monitored during the peri-ischemic period with a microdialysis biosensor. Neuronal cell loss in the hippocampal CA1 was evaluated by cresyl-violet staining of sections 7 days later. Propofol (3 and 10 mg/kg) and Intralipid, compared with aCSF, similarly reduced the extracellular glutamate accumulation during the peri-ischemic period (P<0.05), indicating that the extracellular glutamate reduction that was seen primarily reflects the effect of Intralipid. The number of intact neurons in the hippocampal CA1 in propofol 10 mg/kg-treated rats was significantly higher than that in rats treated with propofol 3 mg/kg, Intralipid, or aCSF (P<0.05). We conclude that intracerebroventricular propofol exhibits neuroprotection against transient global forebrain ischemia; however, the extracellular glutamate level during ischemia is not a major determinant of this neuroprotection. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据