4.6 Article

Kinesin has three nucleotide-dependent conformations - Implications for strain-dependent release

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 45, 页码 35413-35423

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M004232200

关键词

-

资金

  1. NCRR NIH HHS [RR10404] Funding Source: Medline
  2. NINDS NIH HHS [NS34856] Funding Source: Medline

向作者/读者索取更多资源

Although crystallographic information is available on several nucleotide-induced states in myosin, little is known about the corresponding structural changes in kinesin, since a crystallographic model is only available for the kinesin:ADP complex. This makes it difficult to characterize at a molecular level the structural changes that occur in this motor through the course of its ATPase cycle. In this study, we report on the production of a series of single tryptophan mutants of a monomeric human kinesin motor domain, which demonstrate nucleotide-dependent changes in microtubule affinity that are similar to wild type, We have used these mutations to measure intramolecular distances in both strong and weak binding states, using florescence resonance energy transfer. This work provides direct evidence that movement of the switch II loop and helix are essential to mediate communication between the catalytic and microtubule binding sites, evidence that is supported as well by molecular modeling. Kinetic studies of fluorescent nucleotide binding to these mutants are consistent with these distance changes, and demonstrate as well that binding of ADP produces two structural transitions, neither of which are identical to that produced by the binding of ATP. This study provides a basis for understanding current structural models of the kinesin mechanochemical cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据