4.7 Article

How do substrates enter and products exit the buried active site of cytochrome P450cam?: 2.: Steered molecular dynamics and adiabatic mapping of substrate pathways

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 303, 期 5, 页码 813-830

出版社

ACADEMIC PRESS LTD
DOI: 10.1006/jmbi.2000.4155

关键词

molecular dynamics simulation; cytochrome P450; protein dynamics; buried active site; enzyme-substrate binding

向作者/读者索取更多资源

Three possible channels by which substrates and products can exit from the buried active site of cytochrome P450cam have been identified by means of random expulsion molecular dynamics simulations. In the investigation described here, we computed estimates of the relative probabilities of ligand passage through the three channels using steered molecular dynamics and adiabatic mapping. For comparison, the same techniques are also applied to investigate substrate egress from cytochrome P450-BM3. The channel in cytochrome P450cam, for which there is the most supporting evidence from experiments (which we name pathway 2a), is computed to be the most probable ligand exit channel. It has the smallest computed unbinding work and force. For this channel, the ligand exits between the F/G loop and the B' helix. Two mechanistically distinct, but energetically similar routes through this channel were observed, showing that multiple pathways along one channel are possible. The probability of ligand exit via the next most probable channel (pathway 3), which is located between the I helix and the F and G helices, is estimated to be less than 1/10 of the probability of exit along pathway 2a. Low-frequency modes of the protein extracted from an essential dynamics analysis of a 1 ns duration molecular dynamics simulation of cytochrome P450cam with camphor bound, support the opening of pathway 2a on a longer timescale. On longer timescales, it is therefore expected that this pathway becomes more dominant than estimated from the present computations. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据