4.6 Review

Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease

期刊

BIOFACTORS
卷 37, 期 3, 页码 228-240

出版社

WILEY
DOI: 10.1002/biof.159

关键词

mitochondria; ER stress; calcium; Parkinson's disease

资金

  1. Italian Ministry of University and Research
  2. University of Padova

向作者/读者索取更多资源

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta (SNPC) and the presence of intracytoplasmatic inclusions known as Lewy bodies, largely composed of alpha-synuclein (alpha-syn). PD is a multifactorial disease and its etiology remains largely elusive. Although more than 90% of the cases are sporadic, mutations in several nuclear encoded genes have been linked to the development of autosomal recessive and dominant familial parkinsonian syndromes (Bogaerts et al. (2008) Genes Brain Behav 7, 129-151), enhancing our understanding of biochemical and cellular mechanisms contributing to the disease. Many cellular mechanisms are thought to be involved in the dopaminergic neuronal death in PD, including oxidative stress, intracellular Ca2+ homeostasis impairment, and mitochondrial dysfunctions. Furthermore, endoplasmic reticulum (ER) stress together with abnormal protein degradation by the ubiquitin proteasome system is considered to contribute to the PD pathogenesis. This review covers all the aspects related to the molecular mechanisms underlying the interplay between mitochondria, ER, and proteasome system in PD-associated neurodegeneration. (C) 2011 International Union of Biochemistry and Molecular Biology, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据