4.7 Article

Invisible axions and large-radius compactifications

期刊

PHYSICAL REVIEW D
卷 62, 期 10, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevD.62.105023

关键词

-

向作者/读者索取更多资源

We study some of the novel effects that arise when the QCD axion is placed in the bulk of large extra spacetime dimensions. First. we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, a feature which is not possible in four dimensions and which may contribute to axion invisibility. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino oscillations), and show that these oscillations cause laboratory axions to decohere extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances the presence of an infinite tower of Kaluza-Klein axion modes can significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations, thereby enabling the Peccei-Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscillation bounds. Together, these ideas therefore provide new ways of obtaining an invisible axion within the context of higher-dimensional theories with large-radius compactifications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据