4.7 Article

Neuroprotective role of dopamine against hippocampal cell death

期刊

JOURNAL OF NEUROSCIENCE
卷 20, 期 22, 页码 8643-8649

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.20-22-08643.2000

关键词

epilepsy; excitotoxicity; apoptosis; dopamine D2 receptors; glutamate receptors; kainic acid

向作者/读者索取更多资源

Glutamate excitotoxicity plays a key role in the induction of neuronal cell death occurring in many neuropathologies, including epilepsy. Systemic administration of the glutamatergic agonist kainic acid (KA) is a well characterized model to study epilepsy-induced brain damage. KA-evoked seizures in mice result in hippocampal cell death, with the exception of some strains that are resistant to KA excitotoxicity. Little is known about the factors that prevent epilepsy-related neurodegeneration. Here we show that dopamine has such a function through the activation of the D2 receptor (D2R). D2R gene inactivation confers susceptibility to KA excitotoxicity in two mouse strains known to be resistant to KA-induced neurodegeneration. D2R-/- mice develop seizures when administered KA doses that are not epileptogenic for wild-type (WT) littermates. The spatiotemporal pattern of c-fos and c-jun mRNA induction well correlates with the occurrence of seizures in D2R-/- mice. Moreover, KA-induced seizures result in extensive hippocampal cell death in D2R-/- but not WT mice. In KA-treated D2R-/- mice, hippocampal neurons die by apoptosis, as indicated by the presence of fragmented DNA and the induction of the proapoptotic protein BAX. These results reveal a central role of D2Rs in the inhibitory control of glutamate neurotransmission and excitotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据