4.8 Review

Primary pulmonary hypertension - A vascular biology and translational research work in progress

期刊

CIRCULATION
卷 102, 期 22, 页码 2781-2791

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.102.22.2781

关键词

hypertension, pulmonary; ion channels; potassium; endothelin; nitric oxide; platelets

向作者/读者索取更多资源

Primary pulmonary hypertension (PPH) is a syndrome of dyspnea, chest pain, and syncope defined by increased pulmonary vascular resistance and the absence of a known cause. It also occurs in a familial form, which is linked to unidentified genes on chromosome 2. This syndrome is characterized by abnormalities of pulmonary vascular biology in each compartment of the blood vessel. The lumen has a prothrombotic diathesis, the endothelium displays an excessive production of vasoconstrictors relative to vasodilators, and the smooth muscle cells are depolarized and calcium-overloaded, which is due in part to reduced expression of voltage-gated potassium channels (Kv). This causes vasoconstriction and may promote cell proliferation. The adventitia displays excessive remodeling, which is associated with exaggerated metalloproteinase and elastase activity. Conceptually, PPH seems to require a permissive genotype, a susceptible phenotype (eg, endothelial dysfunction) and, in many cases, an exogenous trigger (eg, an anorexigen). Although there is not a generally accepted, unifying hypothesis regarding its cause, impaired function and the expression of vascular and platelet Ky channels suggest PPH may be a disease of the ion channels. Abnormal matrix metalloproteinase and elastase activity could also explain the abnormal vascular tone, platelet activation, and remodeling in PPH. Although calcium-channel blockers and prostacyclin, particularly when coadministered with warfarin, improve survival, PPH has a 5-year mortality rate of approximate to 50%. Pharmacological and gene therapies aimed at enhancing the activity of prostacyclin, nitric oxide synthases, and Ky channels or at inhibiting endothelin and matrix metalloproteinases are promising areas for future development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据