3.8 Article

Design and realization of a tailor-made enzyme to modify the molecular recognition of 2-arylpropionic esters by Candida rugosa lipase

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0167-4838(00)00185-0

关键词

tailor-made enzyme; lipase; molecular modeling; mutagenesis; 2-arylpropionic ester; molecular recognition

向作者/读者索取更多资源

Within a research project aimed at probing the substrate specificity and the enantioselectivity of Candida rugosa lipase (CRL), computer modeling studies of the interactions between CRL and methyl (+/-)-2-(3-benzoylphenyl)propionate (Ketoprofen methyl ester) have been carried out in order to identify which amino acids are essential to the enzyme/substrate interaction. Different binding models of the substrate enantiomers to the active site of CRL were investigated by applying a computational protocol based on molecular docking, conformational analysis, and energy minimization procedures. The structural models of the computer generated complexes between CRL and the substrates enabled us to propose that Phe344 and Phe345, in addition to the residues constituting the catalytic triad and the oxyanion hole, are the amino acids mainly involved in the enzyme-ligand interactions. To test the importance of these residues for the enzymatic activity, site-directed mutagenesis of the selected amino acids has been performed, and the mutated enzymes have been evaluated for their conversion and selectivity capabilities toward different substrates. The experimental results obtained in these biotransformation reactions indicate that Phe344 and especially Phe345 influence: CRL activity, supporting the findings of our theoretical simulations. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据