4.6 Article

2MASS observations of the Perseus, Orion A, Orion B, and Monoceros R2 molecular clouds

期刊

ASTRONOMICAL JOURNAL
卷 120, 期 6, 页码 3139-3161

出版社

IOP Publishing Ltd
DOI: 10.1086/316845

关键词

ISM : individual (Orion A, Orion B; Monoceros R2, Perseus molecular cloud); stars : formation; stars : pre-main-sequence

向作者/读者索取更多资源

We use the 2MASS Second Incremental Release Point Source Catalog to investigate the spatial distribution of young stars in the Perseus, Orion A, Orion B, and MonR2 molecular clouds. After subtracting a semiempirical model of the field star contamination from the observed star counts, stellar surface density maps are used to identify compact clusters and any stellar population found more uniformly distributed over the molecular cloud. Each cloud contains between two and seven clusters, with at least half of the cluster population found in a single, rich cluster. In addition, a distributed stellar population is inferred in the Orion A and MonR2 molecular clouds within the uncertainties of the field star subtraction with a surface density between 0.013 and 0.083 arcmin(-2). Sensitivity calculations suggest, however, that the number of stars in the distributed population may be underestimated by a factor of 2 or more if stars have been forming with a Miller-Scale IMF at a constant star formation rate for longer than 10 Myr. After considering the possible evolutionary status of the distributed population, the global star formation efficiency implied by the sum of the distributed and cluster populations ranges between 1% and 9% among the four clouds. The fraction of the total stellar population contained in clusters for the nominal extinction model ranges from approximate to 50% to 100% if the distributed population is relatively young (<10 Myr), to 25%-70% if it is relatively old (approximate to 100 Myr). The relatively high fraction of stars contained in clusters regardless of the age of the distributed population, in conjunction with the young ages generally inferred for embedded clusters in nearby molecular clouds, indicates that a substantial fraction of the total stellar population in these regions has formed within the past few million years in dense clusters. This suggests that either the star formation rate in each these clouds has recently peaked if one assumes clouds have ages greater than 10 Myr or molecular clouds are younger than typically thought if one assumes that the star formation rate has been approximately constant in time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据