4.4 Article

Mitonuclear match: Optimizing fitness and fertility over generations drives ageing within generations

期刊

BIOESSAYS
卷 33, 期 11, 页码 860-869

出版社

WILEY
DOI: 10.1002/bies.201100051

关键词

apoptosis; free-radical leak; mitochondria; mitonuclear coadaptation; respiratory chain

资金

  1. UCL

向作者/读者索取更多资源

Many conserved eukaryotic traits, including apoptosis, two sexes, speciation and ageing, can be causally linked to a bioenergetic requirement for mitochondrial genes. Mitochondrial genes encode proteins involved in cell respiration, which interact closely with proteins encoded by nuclear genes. Functional respiration requires the coadaptation of mitochondrial and nuclear genes, despite divergent tempi and modes of evolution. Free-radical signals emerge directly from the biophysics of mosaic respiratory chains encoded by two genomes prone to mismatch, with apoptosis being the default penalty for compromised respiration. Selection for genomic matching is facilitated by two sexes, and optimizes fitness, adaptability and fertility in youth. Mismatches cause infertility, low fitness, hybrid breakdown, and potentially speciation. The dynamics of selection for mitonuclear function optimize fitness over generations, but the same selective processes also operate within generations, driving ageing and age-related diseases. This coherent view of eukaryotic energetics offers striking insights into infertility and age-related diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据