4.5 Article

Quantitative Trait Loci (QTL) Underlying Biomass Yield and Plant Height in Switchgrass

期刊

BIOENERGY RESEARCH
卷 8, 期 1, 页码 307-324

出版社

SPRINGER
DOI: 10.1007/s12155-014-9523-8

关键词

Switchgrass; QTL; Biomass yield; Plant height; Epistasis

资金

  1. BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science

向作者/读者索取更多资源

Switchgrass (Panicum virgatum L.) biomass yield and feedstock quality improvement are priority research areas for bioenergy feedstock development. Identification of quantitative trait loci (QTL) underlying these traits and of trait-linked markers for application in marker-assisted selection (MAS) is of paramount importance in facilitating switchgrass breeding. Detection of QTL for biomass yield and plant height was conducted on parental linkage maps constructed using a heterozygous pseudo-F-1 population derived from a cross between lowland Alamo genotype AP13 and upland Summer genotype VS16. QTL analysis was performed with composite interval mapping. Four QTL for biomass yield and five QTL for plant height were identified using best linear unbiased predictors across ten and eight environments, respectively. The phenotypic variability explained (PVE) by QTL detected in the across environments analysis ranged from 4.9 to 12.4 % for biomass yield and 5.1 to 12.0 % for plant height. A total of 34 and 38 main effect QTL were detected for biomass yield and plant height, respectively, when data from each environment were analyzed separately. The PVE by individual environment QTL ranged from 3.3 to 15.3 % for biomass yield and from 4.3 to 17.4 % for plant height. In addition, 60 and 51 epistatic QTL were detected for biomass yield and plant height, respectively. Significant QTL by environment interactions were detected for QTL mapped in eight genomic regions for each of the two traits. Seven QTL affected both traits and may represent pleiotropic loci. Overall, 11 genomic regions were identified that were important in controlling biomass yield and/or plant height in switchgrass. The markers linked to the main effect and epistatic QTL may be used in MAS to maximize selection gain in switchgrass breeding, leading to a faster development of better biofuel cultivars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据