4.6 Article

Functional analysis of bone sialoprotein: Identification of the hydroxyapatite-nucleating and cell-binding domains by recombinant peptide expression and site-directed mutagenesis

期刊

BONE
卷 27, 期 6, 页码 795-802

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S8756-3282(00)00392-6

关键词

bone sialoprotein; cell binding; crystal growth; hydroxyapatite; mineralization

向作者/读者索取更多资源

Mammalian bone sialoprotein (BSP) is a mineralized tissue-specific protein containing an RGD (arginine-glycine-aspartic acid) cell-attachment sequence and two distinct glutamic acid (glu)-rich regions, with each containing one contiguous glu sequence. These regions have been proposed to contribute to the attachment of bone cells to the extracellular matrix and to the nucleation of hydroxyapatite (HA), respectively. To further delineate the domains responsible for these activities, porcine BSP cDNA was used to construct expression vectors coding for two partial-length recombinant BSP peptides: P2S (residues 42-87), containing the first glutamic acid-rich domain; and P1L (residues 69-300), containing the second glutamic acid-rich region and the RGD sequence. These peptides were expressed in Escherichia coli as his-tag fusion proteins and purified by nickel affinity columns and FPLC chromatography, Digestion with trypsin released the his-tag fusion peptide, which generated P2S-TY (residues 42-87) and P1L-TY (residues 132-239), Using a steady-state agarose gel system, P2S-TY promoted HA nucleation, whereas P2S, P1L, and P1L-TY did not. This implies that the minimum requirement for nucleation of HA resides within the amino acid sequence of the first glutamic acid-rich domain, whereas the second glutamic acid-rich domain may require posttranslational modifications for activity. P1L, but not P2S, promoted RGD-mediated attachment of human gingival fibroblasts in a manner similar to that of native BSP, Deletion of the RGD domain or conversion of it to RGE (arginine-glycine-glutamic acid) abolished the cell-attachment activity of P1L. This suggests that, at least for human gingival fibroblasts, the major cell-attachment activity in the recombinant BSP peptides studied (residues 42-87 and 69-300) requires the RGD sequence located at the C-terminal domain. (C) 2000 by Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据