4.7 Article

Transport and metabolic degradation of hydrogen peroxide in Chara corallina:: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 51, 期 353, 页码 2053-2066

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jexbot/51.353.2053

关键词

catalase; Chara corallina; hydrogen peroxide; permeability coefficient; reflection coefficient; water channel

向作者/读者索取更多资源

A mathematical model is presented that describes permeation of hydrogen peroxide across a cell membrane and the implications of solute decomposition by catalase inside the cell. The model was checked and analysed by means of a numerical calculation that raised predictions for measured osmotic pressure relaxation curves. Predictions were tested with isolated internodal cells of Chara corallina, a model system for investigating interactions between water and solute transport in plant cells. Series of biphasic osmotic pressure relaxation curves with different concentrations of H2O2 Of UP to 350 mol m(-3) are presented. A detailed description of determination of permeability (P-s) and reflection coefficients (sigma (3)) for H2O2 is given in the presence of the chemical reaction in the cell. Mean values were P-s=(3.6 +/- 1.0) 10(-6) m s(-1) and sigma (s)=(0.33+/-0.12) (+/-SD, N=6 cells). Besides transport properties, coefficients for the catalase reaction following a Michaelis-Menten type of kinetics were determined. Mean values of the Michaelis constant (k(M)) and the maximum late of decomposition (V-max) were k(M) = (85 +/- 55) mol m(-3) and v(max)=(49 +/- 40) nmol (s cell)(-1), respectively. The absolute values of P-S and sigma (s) of H2O2 indicated that hydrogen peroxide, a molecule with chemical properties close to that of water, uses water channels (aquaporins) to cross the cell membrane rapidly. When water channels were inhibited with the blocker mercuric chloride (HgCl2), the permeabilities of both water and H2O2 were substantially reduced. In fact, for the latter, it was not measurable. It is suggested that some of the water channels in Chara (and, perhaps, in other species) serve as 'peroxoporins' rather than as 'aquaporins'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据