4.5 Article

Proton and electron heating by radially propagating fast magnetosonic waves

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
卷 105, 期 A12, 页码 27597-27610

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000JA000018

关键词

-

向作者/读者索取更多资源

We investigate the propagation, growth, and decay of fast magnetosonic waves in the Earth's magnetosphere which are believed to contribute to proton heating up to energies of a few hundred eV near the magnetic equator. We construct a model of the proton and electron distribution functions from spacecraft data and use the HOTRAY code to calculate the path-integrated growth and decay of the waves over a range of L shells from L = 2 to L = 7. instability calculations show that the waves are excited at very large angles of propagation with respect to the magnetic field, psi approximate to 89 degrees, at the harmonics of the proton gyrofrequency Omega (H+) up to the lower hybrid resonance frequency omega (LHR) by a proton ring distribution at energies of the order of 10 keV. As a rule of thumb, we find that growth is possible for omega > 30 Omega (H+) when the ring velocity exceeds the Alfven speed nu (R) > nu (A), and for omega < 30Omega>(H+) when nu (R) > 2 nu (A) For propagation in the meridian plane, waves generated just outside the plasmapause grow with large amplification as they propagate away from the Earth but eventually lose energy to plasma sheet electrons at energies of a few keV by Landau damping. The waves grow to large amplification at frequencies just below omega (LHR) For inward propagation we find that waves generated just outside the plasmapause can propagate to L approximate to 2 with very little attenuation, suggesting that waves observed well inside the plasmasphere could originate from a source region just outside the plasmapause. Strong wave growth only occurs for large angles of propagation, and thus the waves are confined to within a few degrees of the magnetic equator. Waves generated near geostationary orbit and which propagate toward the Earth are absorbed by Doppler-shifted cyclotron resonance when they propagate into a region where nu (R) nu>(A). Cyclotron resonant absorption causes pitch angle scattering and heating transverse to the ambient magnetic field. The amount of absorption, and hence transverse proton heating, increases significantly as the thermal proton temperature is increased up to 100 eV, suggesting a feedback process. Ray tracing shows that transverse heating of the thermal proton distribution is most likely to occur just outside the plasmapause where nu (A) is large. Since proton ring distributions are formed during magnetic storms at ring current energies, we suggest that fast magnetosonic waves provide an additional energy loss process for ring current decay.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据