4.7 Article

Aptamer-based electrochemical biosensor for detection of adenosine triphosphate using a nanoporous gold platform

期刊

BIOELECTROCHEMISTRY
卷 94, 期 -, 页码 47-52

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2013.05.005

关键词

Aptasensor; Aptamer; Adenosine triphosphate; Nanoporous gold electrode; 3, 4-Diaminobenzoic acid

资金

  1. Research Council of the University of Isfahan

向作者/读者索取更多资源

In spite of the promising applications of aptamers in the bioassays, the development of aptamer-based electrochemical biosensors with the improved limit of detection has remained a great challenge. A strategy for the amplification of signal, based on application of nanostructures as platforms for the construction of an electrochemical adenosine triphosphate (ATP) aptasensor, is introduced in the present manuscript. A sandwich assay is designed by immobilizing a fragment of aptamer on a nanoporous gold electrode (NPGE) and its association to second fragment in the presence of ATP. Consequently, 3, 4-diarninobenzoic acid (DABA), as a molecular reporter, is covalently attached to the amine-label of the second fragment, and the direct oxidation signal of DABA is followed as the analytical signal. The sensor can detect the concentrations of ATP as low as submicromolar scales. Furthermore, 3.2% decrease in signal is observed by keeping the aptasensor at 4 degrees C for a week in buffer solution, implying a desirable stability. Moreover, analog nucleotides, including GTP, UTP and CTP, do not show serious interferences and this sensor easily detects its target in deproteinized human blood plasma. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据