4.7 Article

Numerical simulation of molecular uptake via electroporation

期刊

BIOELECTROCHEMISTRY
卷 82, 期 1, 页码 10-21

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2011.04.006

关键词

Electroporation; Electrophoresis; Molecular delivery; Field-amplified sample stacking

资金

  1. NSF [CBET-0747886]
  2. Directorate For Engineering
  3. Div Of Chem, Bioeng, Env, & Transp Sys [0747886] Funding Source: National Science Foundation

向作者/读者索取更多资源

A numerical study of electroporation-mediated molecular delivery is presented. The model consists of the Nernst-Planck equations for species transport, coupled with an asymptotic Smoluchowski equation for membrane permeabilization. The transfer of calcium ions into a Chinese Hamster Ovary cell is simulated. The results reveal important physical insights. First, for this particular case, ion electrophoresis plays an important role, and is an order of magnitude faster than free diffusion on a comparable time scale. Second, the maximum achievable concentration within the cell is reciprocally correlated with the extracellular electrical conductivity. This behavior is mediated by an electrokinetic mechanism known as field-amplified sample stacking. Through this mechanism, the intracellular ion concentration can reach a level higher than the extracellular one provided that the intra-to-extracellular conductivity ratio is greater than unity. The results corroborate well with data in the literature, and offer a mechanistic interpretation to previous experimental observations. This work is a step toward the quantification of molecular delivery via electroporation. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据