4.8 Review

Fabrication and performance of GaN electronic devices

期刊

MATERIALS SCIENCE & ENGINEERING R-REPORTS
卷 30, 期 3-6, 页码 55-212

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0927-796X(00)00028-0

关键词

GaN electronic devices; ohmic contact; diodes; p-n junctions

向作者/读者索取更多资源

GaN and related materials (especially AlGaN) have recently attracted a lot of interest for applications in high power electronics capable of operation at elevated temperatures. Although the growth and processing technology for SiC, the other viable wide bandgap semiconductor material, is more mature, the AlGaInN system offers numerous advantages. These include wider bandgaps, good transport properties, the availability of heterostructures (particularly AlGaN/GaN), the experience base gained by the commercialization of GaN-based laser and light-emitting diodes and the existence of a high growth rate epitaxial method (hydride vapor phase epitaxy) for producing very thick layers or even quasi-substrates. These attributes have led to rapid progress in the realization of a broad range of GaN electronic devices, including heterostructure field effect transistors (HFETs), Schottky and p-i-n rectifiers, heterojunction bipolar transistors (HBTs), bipolar junction transistors (BJTs) and metal-oxide semiconductor field effect transistors (MOSFETs). This review focuses on the development of fabrication processes for these devices and the current state-of-the-art in device performance, for all of these structures. We also detail areas where more work is needed, such as reducing defect densities and purity of epitaxial layers, the need for substrates and improved oxides and insulators, improved p-type doping and contacts and an understanding of the basic growth mechanisms. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据