4.4 Article

Removal of the sesquiterpene β-caryophyllene from air via biofiltration: performance assessment and microbial community structure

期刊

BIODEGRADATION
卷 24, 期 5, 页码 685-698

出版社

SPRINGER
DOI: 10.1007/s10532-012-9616-z

关键词

Biofilter; Biofiltration; beta-Caryophyllene; Community structure; Conifer; Lumber; Gordonia; Pinene; Sesquiterpene; Shut down; Terpene; Wood

资金

  1. Governor's Biotechnology Initiative of the Louisiana Board of Regents Enhancement of the LSU Hazardous Substance Research Center Environmental Biotechnology Initiative [15]

向作者/读者索取更多资源

Experiments were conducted in a laboratory-scale biofilter to assess the ability of a fixed-film biological process to treat an air stream containing beta-caryophyllene, a sesquiterpene emitted by a variety of conifer trees as well as industrial wood processing operations. Treatment performance was evaluated under a variety of pollutant loading conditions and nutrient supply rates over an operational period lasting more than 240 days. At empty bed contact times (EBCTs) as low as 10 s and daily average pollutant loading rate as high as 24.2 g C/(m(3) h) (grams pollutant measured as carbon per cubic meter packed bed volume per hour), removal efficiencies in excess of 95 % were observed when sufficient nutrients were supplied. Results demonstrate that, as with biofilters treating other compounds, biofilters treating beta-caryophyllene can experience local nutrient limitations that result in diminished performance. The biofilter successfully recovered high removal efficiency within a few days after resumption of pollutant loading following a 14-day interval of no contaminant loading. Construction of a 16S rRNA gene library via pyrosequencing revealed the presence of a high proportion of bacteria clustering within the genera Gordonia (39.7 % of the library) and Rhodanobacter (37.6 %). Other phylotypes detected at lower relative abundances included Pandoraea (6.2 %), unclassified Acetobacteraceae (5.5 %), Dyella (3.3 %), unclassified Xanthomonadaceae (2.6 %), Mycobacterium (1.8 %), and Nocardia (0.6 %). Collectively, results demonstrate that beta-caryophyllene can be effectively removed from contaminated gas streams using biofilters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据