4.5 Article

Cation-π effects in the complexation of Na+ and K+ with Phe, Tyr, and Trp in the gas phase

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S1044-0305(00)00181-1

关键词

-

向作者/读者索取更多资源

Na+ and K+ gas-phase affinities of the three aromatic amino acids Phe, Tyr, and Trp were measured by the kinetic method. Na+ binds these amino acids much more strongly than K+, and for both metal ions the binding strength was found to follow the order Phe less than or equal to Tyr < Trp. Quantum chemical calculations by density functional theory (DFT) gave the same qualitative ordering, but suggested a somewhat larger Phe/Trp increment. These results are in acceptable agreement with predictions based on the binding of Na+ and K+ to the side chain model molecules benzene, phenol, and indole, and are also in reasonable agreement with the predictions from purely electrostatic calculations of the side-chain binding effects. The binding energies were compared with those to the aliphatic amino acids glycine and alanine. Binding to the aromatic amino acids was found to be stronger both experimentally and computationally, but the DFT calculations indicate substantially larger increments relative to alanine than shown by the experiments. Possible reasons for this difference are discussed. The metal ion binding energies show the same trends as the proton affinities. (J Am Soc Mass Spectrom 2000, 11, 1037-1046) (C) 2000 American Society for Mass Spectrometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据