4.3 Article

Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory

期刊

BIOLOGICAL CYBERNETICS
卷 83, 期 6, 页码 501-515

出版社

SPRINGER
DOI: 10.1007/s004220000181

关键词

-

向作者/读者索取更多资源

We study the dynamics and stability of legged locomotion in the horizontal plane. Motivated by experimental studies of insects, we develop two- and three-degree-of freedom rigid body models with pairs of 'virtual' elastic legs in intermittent contact with the ground. We focus on conservative compliant-legged models, but we also consider prescribed forces, prescribed leg displacements, and combined strategies. The resulting mechanical systems exhibit periodic gaits whose stability characteristics are due to intermittent foot contact, and are largely determined by geometrical criteria. Most strikingly, we show that mechanics alone can confer asymptotic stability in heading and body orientation. In a companion paper, we apply our results to rapidly running cockroaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据