4.6 Article

Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum

期刊

PHYSICAL REVIEW B
卷 62, 期 22, 页码 14720-14727

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.62.14720

关键词

-

向作者/读者索取更多资源

Model interaction potentials for real materials are generally optimized with respect to only those experimental properties that are easily evaluated as mechanical averages [e.g., elastic constants (at T=0 K), static lattice energies, and liquid structure]. For such potentials, agreement with experiment for the nonmechanical properties, such as the melting point, is not guaranteed and such values can deviate significantly from experiment. We present a method for reparametrizing any model interaction potential of a real material to adjust its melting temperature to a value that is closer to its experimental melting temperature. This is done without significantly affecting the mechanical properties for which the potential was modeled. This method is an application of Gibbs-Duhem integration [D. Kofke, Moll Phys. 78, 1331 (1993)]. As a test we apply the method to an embedded atom model of aluminum [J. Mei and J.W. Davenport, Phys. Rev. B 16, 21 (1992)] for which the melting temperature for the thermodynamic Limit is 826.4+/-1.3 K-somewhat below the experimental value of 933 K. After reparametrization, the melting temperature of the modified potential is found to be 931.5+/-1.5 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据