4.6 Article

Repair of gaps in retroviral DNA integration intermediates

期刊

JOURNAL OF VIROLOGY
卷 74, 期 23, 页码 11191-11200

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.74.23.11191-11200.2000

关键词

-

类别

资金

  1. NIAID NIH HHS [AI34786, R01 AI034786] Funding Source: Medline
  2. NIGMS NIH HHS [GM56553] Funding Source: Medline

向作者/读者索取更多资源

Diverse mobile DNA elements are believed to pirate host cell enzymes to complete DNA transfer. Prominent examples are provided by retroviral cDNA integration and transposon insertion. These reactions initially involve the attachment of each element 3' DNA end to staggered sites in the host DNA by element-encoded integrase or transposase enzymes. Unfolding of such intermediates yields DNA gaps at each junction. It has been widely assumed that host DNA repair enzymes complete attachment of the remaining DNA ends, but the enzymes involved have not been identified for any system. We have synthesized DNA substrates containing the expected gap and 5' two-base flap structure present in retroviral integration intermediates and tested candidate enzymes for the ability to support repair in vitro. We find three required activities, two of which can be satisfied by multiple enzymes. These are a polymerase (polymerase beta, polymerase delta and its cofactor PCNA, or reverse transcriptase), a nuclease (flap endonuclease), and a ligase (ligase I, III, or IV and its cofactor XRCC4). A proposed pathway involving retroviral integrase and reverse transcriptase did not carry out repair under the conditions tested. In addition, prebinding of integrase protein to gapped DNA inhibited repair reactions, indicating that gap repair in vivo may require active disassembly of the integrase complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据