4.7 Article

Magnetic Norbornene Polymer as Multiresponsive Nanocarrier for Site Specific Cancer Therapy

期刊

BIOCONJUGATE CHEMISTRY
卷 25, 期 2, 页码 276-285

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bc400409n

关键词

-

资金

  1. CSIR
  2. UGC, New Delhi
  3. CSIR, New Delhi
  4. Department of Science and Technology, New Delhi
  5. DBT
  6. IISER-Kolkata

向作者/读者索取更多资源

A site-specific, stimuli-responsive nanocarrier has been synthesized by conjugating folate, magnetic particles and doxorubicin to the backbone of norbornene polymer. Monomers, namely, cis-5-norbornene-6-(diethoxyphosphoryl)hexanote (mono 1), norbornene grafted poly(ethyleneglycol)-folate (mono 2), and norbornene derived doxorubicin (mono 3) are carefully designed to demonstrate the smart nanorcarrier capabilities. The synthesis and complete characterization of all three monomers are elaborately discussed. Their copolymerization is done by controlled/living ring-opening metathesis polymerization (ROMP) to get the triblock copolymer PHOS-FOL-DOX. NMR spectroscopy and gel permeation chromatography confirm the formation of the triblock copolymer, while FT-IR spectroscopy, thermogravimetric analysis, along with transmission electron microscope confirm the anchoring of iron particle (Fe3O4) to the PHOS-FOL-DOX Drug release profile shows the importance of having the hydrazone linker that helps to release the drug exactly at the mild acidic conditions resembling the pH of the cancerous cells. The newly designed nanocarrier shows greater internalization (about 8 times) due to magnetic field. Also, increased intracellular DOX release is observed due to the folate receptor. From these results, it is clear that PHOS-FOL-DOX has the potential to act as a smart nanoreservoir with the magnetic field guidance, folate receptor targeting, and finally pH stimulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据