4.5 Article

Protein motions at zero-total angular momentum: The importance of long-range correlations

期刊

BIOPHYSICAL JOURNAL
卷 79, 期 6, 页码 2902-2908

出版社

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(00)76527-1

关键词

-

向作者/读者索取更多资源

A constant-energy molecular dynamics simulation is used to monitor protein motion at zero-total angular momentum. With a simple protein model, it is shown that overall rotation is possible at zero-total angular momentum as a result of flexibility. Since the rotational motion is negligible on a time scale of 1000 reduced time units, the essentially rotation-free portion of the trajectory provides an unbiased test of the common approximate methods for separating overall rotation from internal motions by optimal superposition. Removing rotation by minimizing the root-mean-square deviation (RMSD) for the entire system is found to be more appropriate than using the RMSD for only the more rigid part of the system. The results verify the existence of positive cross-correlation in the motions of atoms separated by large distances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据