4.7 Article

Enzymatic Transformation of Phosphate Decorated Magnetic Nanoparticles for Selectively Sorting and Inhibiting Cancer Cells

期刊

BIOCONJUGATE CHEMISTRY
卷 25, 期 12, 页码 2129-2133

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bc500516g

关键词

-

资金

  1. NIH [R01A142746]
  2. NSF MRSEC grant [DMR-0820492]

向作者/读者索取更多资源

As an important and necessary step of sampling biological specimens, the separation of malignant cells from a mixed population of cells usually requires sophisticated instruments and/or expensive reagents. For health care in the developing regions, there is a need for an inexpensive sampling method to capture tumor cells for rapid and accurate diagnosis. Here we show that an underexplored generic difference-overexpression of ectophosphatases-between cancer and normal cells triggers the d-tyrosine phosphate decorated magnetic nanoparticles (Fe3O4-p(d-Tyr)) to adhere selectively on cancer cells upon catalytic dephosphorylation, which enables magnetic separation of cancer cells from mixed population of cells (e.g., cocultured cancer cell (HeLa-GFP) and stromal cells (HS-5)). Moreover, the Fe3O4-p(d-Tyr) nanoparticles also selectively inhibit cancer cells in the coculture. As a general method to broadly target cancer cells without highly specific ligand-receptor interactions (e.g., antibodies), the use of an enzymatic reaction to spatiotemporally modulate the state of various nanostructures in cellular environments will ultimately lead to the development of new theranostic applications of nanomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据