4.7 Article

Degradable Thermoresponsive Nanogels for Protein Encapsulation and Controlled Release

期刊

BIOCONJUGATE CHEMISTRY
卷 23, 期 1, 页码 75-83

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bc2003814

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Reversible addition fragmentation chain transfer (RAFT) polymerization technique was used for the fabrication of stable core cross-linked micelles (CCL) with thermoresponsive and degradable cores. Well-defined poly(2-methacryloyloxyethyl phosphorylcholine), poly(MPC) macro RAFT agent, was first synthesized with narrow molecular weight distribution via the RAFT process. These CCL micelles (termed as nanogels) with hydrophilic poly(MPC) shell and thermoresponsive core consisting of poly(methoxydiethylene glycol methacrylate) (poly(MeODEGM) and poly(2-aminoethyl methacrylamide hydrochloride) (poly(AEMA) were then obtained in a one-pot process by RAFT polymerization in the presence of an acid degradable cross-linker. These acid degradable nanogels were efficiently synthesized with tunable sizes and low polydispersities. The encapsulation efficiencies of the nanogels with different proteins such as insulin, BSA, and beta-galactosidase were studied and found to be dependent of the cross-linker concentration, size of protein, and the cationic character of the nanogels imparted by the presence of AEMA in the core. The thermoresponsive nature of the synthesized nanogels plays a vital role in protein encapsulation: the hydrophilic core and shell of the nanogels at low temperature allow easy diffusion of the proteins inside out and, with an increase in temperature, the core becomes hydrophobic and the nanogels are easily separated out with entrapped protein. The release profile of insulin from nanogels at low pH was studied and results were analyzed using bicinchoninic assay (BCA). Controlled release of protein was observed over 48 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据