4.8 Article

Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice

期刊

CIRCULATION
卷 102, 期 24, 页码 3015-3022

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.cir.102.24.3015

关键词

endotoxin; shock; vasoconstriction; perfusion

向作者/读者索取更多资源

Background-Heme oxygenase (HO)-1 is an enzyme that degrades heme to generate CO (a vasodilatory gas), iron, and the potent antioxidant bilirubin. A disease process characterized by decreases in vascular tone and increases in oxidative stress is endotoxic shock. Moreover, HO-1 is markedly induced in multiple organs after the administration of endotoxin (lipopolysaccharide [LPS]) to mice. Methods and Results-To determine the role of HO-1 in endotoxemia, we administered LPS to mice that were wild-type (+/+), heterozygous (+/-), or homozygous null (-/-) for targeted disruption of HO-1. LPS produced a similar induction of HO-1 mRNA and protein in HO-1(+/+) and HO-1(+/-) mice, whereas HO-1(-/-) mice showed no HO-1 expression. Four hours after LPS, systolic blood pressure (SBP) decreased in all the groups. However, SEP was significantly higher in HO-1(-/-) mice (121+/-5 mm Hg) after 24 hours, compared with HO-1(+/+) (96+/-7 mm Hg) and HO-1(+/-) (89+/-13 mm Hg) mice. A sustained increase in endothelin-l contributed to this SEP response. Even though SEP was higher, mortality was increased in HO-1(-/-) mice, and they exhibited hepatic and renal dysfunction that was not present in HO-1(+/+) and HO-1(+/-) mice. The end-organ damage and death in HO-1(-/-) mice was related to increased oxidative stress. Conclusions-These data suggest that the increased mortality during endotoxemia in HO-1(-/-) mice is related to increased oxidative stress and end-organ (renal and hepatic) damage, not to refractory hypotension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据