4.8 Article

DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis

期刊

CURRENT BIOLOGY
卷 10, 期 24, 页码 1591-1594

出版社

CELL PRESS
DOI: 10.1016/S0960-9822(00)00862-9

关键词

-

向作者/读者索取更多资源

In plants, transgenes can be silenced at both the transcriptional [1] and post transcripitonal levels [2]. Methylation of the transgene promoter correlates with transcriptional gene silencing (TGS) [3] whereas methylation of the coding sequence is associated with post-transcriptional gene silencing (PTGS) [4]. In animals, TGS requires methylation and changes in chromatin conformation [5]. The involvement of methylation during PTGS in plants is unclear and organisms with nonmethylated genomes such as Caenorhabditis elegans or Drosophila can display RNA interference (RNAi), a silencing process mechanistically related to PTGS [6]. Here, we crossed Arabidopsis mutants impaired in a SWI2/SNF2 chromatin component (ddm1 [7]) or in the major DNA methyltransferase (met1 [8] and E. Richards, personal communication) with transgenic lines in which a reporter consisting of the cauliflower mosaic virus 35S promoter fused to the beta -glucuronidase (GUS) gene (35S-GUS) was silenced by TGS or PTGS. We observed an efficient release of 35S-GUS TGS by both the ddm1 and met1 mutations and stochastic release of 35S-GUS PTGS by these two mutations during development. These results show that DNA methylation and chromatin structure are common regulators of TGS and PTGS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据