4.8 Article

Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice

期刊

EMBO JOURNAL
卷 19, 期 24, 页码 6675-6685

出版社

WILEY
DOI: 10.1093/emboj/19.24.6675

关键词

apoptosis; embryonic lethality; knockout mouse; neuronal development; Rad51-like gene

向作者/读者索取更多资源

Repair of DNA damage by homologous recombination has only recently been established as an important mechanism in maintaining genetic stability in mammalian cells. The recently cloned Xrcc2 gene is a member of the mammalian Rad51 gene family, thought to be central to homologous recombination repair. To understand its function in mammals, we have disrupted Xrcc2 in mice. No Xrcc2(-/-) animals were found alive, with embryonic lethality occurring from midgestation. Xrcc2(-/-) embryos surviving until later stages of embryogenesis commonly showed developmental abnormalities and died at birth. Neonatal lethality, apparently due to respiratory failure, was associated with a high frequency of apoptotic death of postmitotic neurons in the developing brain, leading to abnormal cortical structure. Embryonic cells showed genetic instability, revealed by a high level of chromosomal aberrations, and were sensitive to gamma -rays. Our findings demonstrate that homologous recombination has an important role in endogenous damage repair in the developing embryo. Xrcc2 disruption identifies a range of defects that arise from malfunction of this repair pathway, and establishes a previously unidentified role for homologous recombination repair in correct neuronal development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据