4.6 Article

The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 1, 页码 76-85

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M008752200

关键词

-

向作者/读者索取更多资源

In yeast, the transition between the fermentative and the oxidative metabolism, called the diauxic shift, is associated with major changes in gene expression and protein synthesis. The zinc cluster protein Cat8p is required for the derepression of nine genes under nonfermentative growth conditions (ACS1, FBP1, ICL1, IDP2, JEN1, MLS1, PCK1, SFCI, and SIP4). To investigate whether the transcriptional control mediated by Cat8p can be extended to other genes and whether this control is the main control for the changes in the synthesis of the respective proteins during the adaptation to growth on ethanol, we analyzed the transcriptome and the proteome of a cat8 Delta strain during the diauxic shift. In this report, we demonstrate that, in addition to the nine genes known as Cat8p-dependent, there are 25 other genes or open reading frames whose expression at the diauxic shift is altered in the absence of Cat8p, For all of the genes characterized here, the Cat8p-dependent control results in a parallel alteration in mRNA and protein synthesis. It appears that the biochemical functions of the proteins encoded by Cat8p-dependent genes are essentially related to the first steps of ethanol utilization, the glyogylate cycle, and gluconeogenesis. Interestingly, no function involved in the tricarboxylic cycle and the oxidative phosphorylation seems to be controlled by Cat8p.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据