4.6 Article

Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 276, 期 1, 页码 232-243

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M006555200

关键词

-

资金

  1. NIGMS NIH HHS [GM-41347] Funding Source: Medline

向作者/读者索取更多资源

We demonstrate that RecQ helicase from Escherichia coli is a catalytic helicase whose activity depends on the concentration of ATP, free magnesium ion, and single-stranded DNA-binding (SSB) protein. Helicase activity is cooperative in ATP concentration, with an apparent S-0.5 value for ATP of 200 muM and a Hill coefficient of 3.3 +/- 0.3, Therefore, RecQ helicase utilizes multiple, interacting ATP-binding sites to mediate double-stranded DNA (dsDNA) unwinding, implicating a multimer of at least three subunits as the active unwinding species. Unwinding activity is independent of dsDNA ends, indicating that RecQ helicase can unwind from both internal regions and ends of dsDNA. The K-M for dsDNA is 0.5-0.9 mum base pairs; the K-cat for DNA unwinding is 2.3-2.7 base pairs/s/monomer of RecQ helicase; and unexpectedly, helicase activity is optimal at a free magnesium ion concentration of 0.05 mM. Omitting Escherichia coli SSB protein lowers the rate and extent of dsDNA unwinding, suggesting that RecQ helicase associates with the single-stranded DNA (ssDNA) product. In agreement, the ssDNA-dependent ATPase activity is reduced in proportion to the SSB protein concentration; in its absence, ATPase activity saturates at six nucleotides/RecQ helicase monomer and yields a k(cat) of 24 s(-1). Thus, we conclude that SSB protein stimulates RecQ helicase-mediated unwinding by both trapping the separated ssDNA strands after unwinding and preventing the formation of non-productive enzyme-ssDNA complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据