4.4 Article

Integration of movable structures in PDMS microfluidic channels

期刊

BIOCHIP JOURNAL
卷 4, 期 2, 页码 117-122

出版社

KOREAN BIOCHIP SOCIETY-KBCS
DOI: 10.1007/s13206-010-4205-x

关键词

PDMS; Adhesion; Micropumps; Movable structure; Surface coating

资金

  1. Ministry for Health, Welfare and Family Affairs, Republic of Korea [A040032-0923-0000300]

向作者/读者索取更多资源

In this paper, we analyzed the behavior of moving structures in a check valve micropumping system and proposed a method to improve the freedom of motion of such structures. A model ball valve in a microchannel system was designed for this study. The behavior of the glass sphere, which acted as an independent flow check valve in the PDMS microfluidic channel, was analyzed. We found that the motion of the ball valve in the microchannel was sensitive to the properties of the interface between the ball, channel, and liquid. The glass ball valve moved freely when methanol or ethanol was introduced into the PDMS channel. However, the ball valve adhered to the PDMS channel when deionized (DI) water or cell culture media was introduced. Such behavior inhibits the applicability of this micropump to biological systems. The adhesion properties were modeled using the theory of interfacial actions between heterogeneous materials. The theoretical model successfully predicted the interaction properties that governed ball valve motion in the PDMS microchannels. To ameliorate the excessive adhesion in DI water or cell culture media, a hybrid inorganic/organic polymer (HR4) was used to coat the PDMS channel. In the HR4-coated ball valve micropump, the glass ball moved freely in DI water and cell culture media. Finally, the biocompatibility of the HR4 coating was evaluated by pumping human mesenchymal stem cells (hMSCs) suspended in media, and the pumped cells were cultured and evaluated for viability. A good viability demonstrated that the HR4 pump was biocompatible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据